
Presented by: Ioannis Kostaras

IOANNIS KOSTARAS

• Introduction and History
• Installation

• Tools
• Basics

• Data types
• Variables, Control flow and loops
• Arrays, Tuples
• Strings and Slices
• Functions

• Memory Management
• Ownership, References, Lifetimes

• Object Orientation
• Structs, Enums and Traits

• Summary

AGENDA

• Standard Library
• Closures
• Multi-threading
• Packages and Modules
• Error Handling
• Unit Testing

FUTURE AGENDA

ØIntroduction and History
• Installation

• Tools
• Basics

• Data types
• Variables, Control flow and loops
• Arrays, Tuples
• Strings and Slices
• Functions

• Memory Management
• Ownership, References, Lifetimes

• Object Orientation
• Structs, Enums and Traits

• Summary

AGENDA

For six years in a row, Rust has been voted the most loved
programming language by Stack Overflow.

02/04/2023IOANNIS KOSTARAS 5

https://insights.stackoverflow.com/survey/2021%23technology-most-loved-dreaded-and-wanted

• System’s language
• Secure
• Strongly/statically typed
• Supports both functional and imperative paradigms
• Safe (memory safety without GC)

• no need to manage memory (it is handled internally)
• no Null Pointers

• Concurrent, for multicore systems
• Syntax similar to C++
• Open source software that is freely available to anyone

and publicly shared

CHARACTERISTICS

• Reliable
• if it compiles, it works!

• Performant
• idiomatic code runs efficiently

• Supportive
• the language, tools, and community are here to help

• Productive
• a little effort => a lot of work

• Transparent
• you can predict and control low-level details

• Versatile
• you can do anything

(FUTURE) DESIGN GOALS

https://www.youtube.com/watch?v=OuSiuySr6_Q&ab_channel=SkillsMatter

Created by Mozilla in 2006 by

• Brendan Eich
(https://brendaneich.com/)

• Dave Herman
(https://medium.com/@davidherman)

• Graydon Hoare
(https://gist.github.com/graydon)

Images: Wikipedia and the Internet

HISTORY

https://brendaneich.com/
https://medium.com/@davidherman
https://gist.github.com/graydon

• Since: 2006 (project rust fungi)
• 15 May 2015: Stable Version 1.0
• August 2020, Mozilla laid off 250 stuff among them the Rust

team
• 8 February 2021: Rust Foundation

• AWS, Huawei, Google, Microsoft, and Mozilla
• 6 April 2021 Android supports Rust

• Current Version: 1.68.0 released 06/03/2023

• Online:
• https://play.rust-lang.org/
• https://replit.com/

HISTORY

https://en.wikipedia.org/wiki/Rust_Foundation
https://en.wikipedia.org/wiki/Android_Open_Source_Project
https://play.rust-lang.org/
https://replit.com/

02/04/2023IOANNIS KOSTARAS 10

GRAPH

C à C++

JavaScript à TypeScript

Objective-C à Swift

Java à Kotlin?

C++ à Rust?

02/04/2023IOANNIS KOSTARAS 11

• Introduction and History
ØInstallation

• Tools
• Basics

• Data types
• Variables, Control flow and loops
• Arrays, Tuples
• Strings and Slices
• Functions

• Memory Management
• Ownership, References, Lifetimes

• Object Orientation
• Structs, Enums and Traits

• Summary

AGENDA

https://doc.rust-lang.org/stable/rust-by-example/
https://rust-by-example-ext.com

PLAYGROUND

https://doc.rust-lang.org/stable/rust-by-example/
https://rust-by-example-ext.com

• Installation binaries can be downloaded for
• Windows (install C++ Build Tools)
• MacOSX
• Linux

$ curl https://sh.rustup.rs -sSf | sh

$ rustup component add rust-docs

// MacOSX
$ brew install rustup-init

$ rustup-init

02/04/2023IOANNIS KOSTARAS 14

INSTALLATION

https://www.rust-lang.org/tools/install
https://visualstudio.microsoft.com/downloads/%23build-tools-forvisual-%20studio-2017

02/04/2023IOANNIS KOSTARAS 15

IDE SUPPORT
Source:
https://areweideyet.com/

https://areweideyet.com/

• Introduction and History
• Installation

ØTools
• Basics

• Data types
• Variables, Control flow and loops
• Arrays, Tuples
• Strings and Slices
• Functions

• Memory Management
• Ownership, References, Lifetimes

• Object Orientation
• Structs, Enums and Traits

• Summary

AGENDA

• rustc : Rust compiler
• rustup : command line utility to install and update Rust
• cargo :

• Build system
• Package manager
• Test runner
• Docs generator

Packages in Rust are referred to
as crates and can be publicly found
at https://crates.io

02/04/2023IOANNIS KOSTARAS 17

TOOLS

crates

https://crates.io/

• rustfmt
• cargo fmt
• .rustfmt.toml

• clippy
• cargo clippy

• doc
• cargo doc
• target/doc/packagename/index.html

• Rustup
• rustup doc --std

02/04/2023IOANNIS KOSTARAS 18

TOOLS

• /// Inner documentation comment
• //! Outer documentation comment
• Markdown

• #, ##, ###,...
• [`link`]
• [Link](https://doc.rust-lang.org/book/)
• `code`
• - bullet1
• - bullet2

02/04/2023IOANNIS KOSTARAS 19

RUST DOC

• Introduction and History
• Installation

• Tools
ØBasics

• Data types
• Variables, Control flow and loops
• Arrays, Tuples
• Strings and Slices
• Functions

• Memory Management
• Ownership, References, Lifetimes

• Object Orientation
• Structs, Enums and Traits

• Summary

AGENDA

$ cargo new hellorust
Created binary (application) `hellorust` package

hellorust/
├── .git
├── .gitignore

├── Cargo.toml
└── src

└── main.rs

$ cd hellorust
$ cargo run
Hello, world!

$ target/debug/hellorust
Hello, world!

02/04/2023IOANNIS KOSTARAS 21

MY FIRST PROGRAM (1/4)

• Cargo.toml
[package]

name = "hellorust"

version = "0.1.0"

authors = ["jkost
<jkost@users.noreply.github.com>"]

edition = "2021"

[dependencies]

02/04/2023IOANNIS KOSTARAS 22

MY FIRST PROGRAM (2/4)

• main.rs
// main function

fn main() {

println!("Hello, world!");

}

02/04/2023IOANNIS KOSTARAS 23

MY FIRST PROGRAM (3/4)

Macro: function with variable
number of arguments

Not to be confused with C
macros

• main.rs
// main function

fn main() {

println!("Hello, world!");

}

$ rustc main.rs

$./main

Hello, world!

02/04/2023IOANNIS KOSTARAS 24

MY FIRST PROGRAM (4/4)

Old way!

fn main() {

let name = "Ioannis";

println!("Hello {}", name);

}

Hello Ioannis

02/04/2023IOANNIS KOSTARAS 25

MY SECOND PROGRAM

A binding binds a variable to a value.
Binding’s data types in Rust are implicitly
inferred but can be explicitly declared

using the separator operator (:).

fn main() {
let name = "Ioannis";
println!("Hello {}", name);
name = "Katerina";
println!("Hello {}", name);

}

error[E0384]: cannot assign twice to immutable variable
`name` --> src/main.rs:4:5 |
2 | let name = "Ioannis";
| ----
| |
| first assignment to `name`
| help: consider making this binding mutable: `mut

name`
3 | println!("Hello {}", name); 4 | name = "Katerina";
| ^^^^^^^^^^^^^^^^^ cannot assign twice to immutable

variable
02/04/2023IOANNIS KOSTARAS 26

MY THIRD PROGRAM

https://doc.rust-lang.org/stable/error-index.html%23E0384
https://play.rust-lang.org/%23

02/04/2023IOANNIS KOSTARAS 27

Bindings are immutable by default

fn main() {

let mut name = "Ioannis";

println!("Hello {}", name);

name = "Katerina";

println!("Hello {}", name);

}

Hello Ioannis

Hello Katerina

02/04/2023IOANNIS KOSTARAS 28

MY THIRD PROGRAM
(CONT.)

• let (by default all variables are immutable)
• const
• static

02/04/2023IOANNIS KOSTARAS 29

VARIABLE DECLARATION

let my_variable = 0;

const PI: f32 = 3.14;

static MY_STRING: String = "RUST";

Object Case
Variables snake_case
Functions snake_case

Files snake_case
Constants SCREAMING_SNAKE_CASE

Statics SCREAMING_SNAKE_CASE
Types PascalCase
Traits PascalCase

Enums PascalCase
02/04/2023IOANNIS KOSTARAS 30

VARIABLE DECLARATION
CONVENTIONS

• Introduction and History
• Installation

• Tools
• Basics

ØData types
• Variables, Control flow and loops
• Arrays, Tuples
• Strings and Slices
• Functions

• Memory Management
• Ownership, References, Lifetimes

• Object Orientation
• Structs, Enums and Traits

• Summary

AGENDA

• Rust contains 25 primitive data types:
• 12 integer primitive data types
• 2 floating point primitive data types
• 1 logical primitive data type
• 1 character primitive data type
• 1 primitive data type for string slices
• array is a primitive data type in Rust
• tuple, a finite heterogeneous sequence of data
• 2 pointer data types, 1 raw unsafe pointer to data and 1

function pointer
• 1 reference data type
• unit data type
• never data type

02/04/2023IOANNIS KOSTARAS 32

DATA TYPES

https://doc.rust-lang.org/core/

• Integer:
i8, i16, i32, i64, i128, isize,
u8, u16, u32, u64, u128, usize
• u means unsigned data while i means signed data.
• u32 represents an unsigned 32-bit integer, while i64

represents a signed 64-bit integer.
• isize and usize are types that can vary in size.

• Literals:
• Decimal: 1000 Binary: 0b11100
• Hex: 0xdeadbeef Byte (u8): b'A'
• Octal: 0o77543

02/04/2023IOANNIS KOSTARAS 33

DATA TYPES

• Floating-point (IEEE-754): f32, f64

• Boolean: true or false
• Character (UCS-4/UTF-32): 'c'

• String: "This is a string"

• Array: a = [1,2,3], a:[f32;2]

• Slice: &a[1…2]

• Tuple: t = (1, 2.0, 3)

02/04/2023IOANNIS KOSTARAS 34

DATA TYPES (CONT.)

let interest: f32 = 3.;

t.0

a[0]

let var1: f32 = 3.14;
// convert f32 to i32
let var2: i32 = var1 as i32;
println!("{} {}", var1, var2);

3.14 3

02/04/2023IOANNIS KOSTARAS 36

DATA TYPE CONVERSION

• Introduction and History
• Installation

• Tools
• Basics

• Data types
ØVariables, Control flow and loops
• Arrays, Tuples
• Strings and Slices
• Functions

• Memory Management
• Ownership, References, Lifetimes

• Object Orientation
• Structs, Enums and Traits

• Summary

AGENDA

• Conditionals:
• if x {…}
• match x {…}

• Loops:
• loop f ... g
• while x f ... g
• for x in 1..100 f ... g

02/04/2023IOANNIS KOSTARAS 39

CONTROL FLOW

Infinite loop

https://doc.rust-lang.org/book/if.html
https://doc.rust-lang.org/book/match.html
https://doc.rust-lang.org/book/loops.html

let mark = if grade >= 5 {

"Pass!"

} else {

"Fail!"

};

02/04/2023IOANNIS KOSTARAS 40

IF, LET-IF

fn main() {

let mark = 16;

match mark {

19..=20 => println!("Excellent!"),

17 | 18 => println!("Very Good."),

15 | 16 => println!("Good."),

m@10..=14 => println!("Average: {}", m),

_ => println!("Rejected.")

}

}

02/04/2023IOANNIS KOSTARAS 41

MATCH

defaultRange
binding

Range
Multiple
patterns

• Matches in Rust are exhaustive, which means that the
code must cover all potential scenarios in order to be
valid.

• If we forget to write the None case, the Rust compiler
will report "pattern 'None' not covered" as an error.

02/04/2023IOANNIS KOSTARAS 42

MATCH (CONT.)

loop {

…

break;

}

while
condition{

// if true

}

02/04/2023IOANNIS KOSTARAS 43

LOOPS
for var in condition {

…
}

for num in 1..4 {

print!("num={},", num);

}

num=1,num=2,num=3,

Range
expression

• Introduction and History
• Installation

• Tools
• Basics

• Data types
• Variables, Control flow and loops
ØArrays, Tuples
• Strings and Slices
• Functions

• Memory Management
• Ownership, References, Lifetimes

• Object Orientation
• Structs, Enums and Traits

• Summary

AGENDA

IOANNIS KOSTARAS

let mut array: [type; length] = [default; length];
let array: [type; length] = [val1, val2, val3, …];

--
let mut arr: [i32; 4] = [1; 4];

arr[1] = 10;

arr[2] = 20;

println!("{} {} {} {}", arr[0], arr[1], arr[2],
arr[3]);

println!("{:?}", arr);

1 10 20 1
[1 10 20 1]

46

ARRAYS

24/11/2022

• Fixed size
• Contain values of only one type.

Debug print

The compiler needs
to know the size

• Slice is a data type that isn't owned by anyone.
• A slice is derived from an existing variable rather than

being constructed from scratch.
• Instead of referencing the entire collection, a slice refers

to a contiguous memory allocation.
• Think of them as views into an underlying array of values.
• Slices borrow their data from their arrays.
• It allows you to access an array in a safe and efficient

manner without having to replicate it.
• Slices only behave like arrays.
• The size of a slice is only known at run-time

02/04/2023IOANNIS KOSTARAS 47

SLICE

let slice = &array[start..end-1];

let arr:[f32; 4] = [1.0, 2.0, 3.0, 4.0];

let slice = &arr[1..3];

println!("{} {} ", slice[0], slice[1]);

2.0 3.0

02/04/2023IOANNIS KOSTARAS 48

ARRAY SLICE

fn sum(values: &[i32]) -> i32 {
let mut res = 0;
for i in 0..values.len() {

res += values[i]
}
res

}

fn main() {
let arr = [10,20,30,40];
let res = sum(&arr);
println!("sum = {}", res);

}

sum = 100

02/04/2023IOANNIS KOSTARAS 49

ARRAY SLICE EXAMPLE

Rust Array ó C array
Rust slice ó C pointer

arr is borrowed

• A collection of different data types
let tuple = (val1, val2, val3…);

02/04/2023IOANNIS KOSTARAS 50

TUPLE

let t = ("ETA", 8, 'h');
print!("{}: {}{}", t.0, t.1, t.2);

ETA: 8h

let tup = (1,"hello".to_string());

let (num,s) = tup; // tup moved

println!("{:?}", tup);

error[E0382]: borrow of partially moved value:
`tup`

--> src/main.rs:4:18

|

3 | let (num,s) = tup; // tup moved

| - value partially moved here

4 | println!("{:?}", tup);

| ^^^ value borrowed here after
partial move

TUPLES - EXTRACT VALUES

let tup = (1,"hello".to_string());

let (num,ref s) = tup; // borrowing is OK

println!("{:?}", tup);

(1, "hello")

TUPLES - EXTRACT VALUES
(CONT.)

#[derive(Debug)]

struct Point {

x: f32,

y: f32

} // structs implement Copy trait

fn main() {

let p = Point{x:0.0,y:0.0};

let Point{x,y} = p;

println!("{:?}", p);

}

Point { x: 0.0, y: 0.0 }

TUPLES - EXTRACT VALUES
(CONT.)

IOANNIS KOSTARAS24/11/2022
54

TUPLES AND MATCHING
let t: (i32,String) = (10, "ETA".to_string());

let text = match t {
(0, s) => format!("zero {}", s),
(10, ref s) if s == "ETA" => format!("{} =

10 minutes", s),
(n, _) if n > 10 => format!("Too late: {}

minutes", n),
_ => format!("no match")

};

println!("{}", text);

ETA = 10 minutes

• Introduction and History
• Installation

• Tools
• Basics

• Data types
• Variables, Control flow and loops
• Arrays, Tuples
ØStrings and Slices
• Functions

• Memory Management
• Ownership, References, Lifetimes

• Object Orientation
• Structs, Enums and Traits

• Summary

AGENDA

IOANNIS KOSTARAS

• There are two kinds of strings in Rust:
• Owned (String) and borrowed (&str)

• Strings are like Vecs, allocated dynamically and
resizable

• Strings in Rust are UTF-8
• String literals are slices (&str)

• String ⬄ Vec<u8>
• &str ⬄ *u[8]

• String slices are immutable and of fixed size
• Strings are not arrays of chars!
• The compiler can convert Strings to &str but

not vice versa
• use to_string()

56

STRINGS & STRING SLICES

24/11/2022

heap

stack

fn main() {
let s: String = "Bye";
println!("{}", s);

}
error[E0308]: mismatched types
--> src/main.rs:2:20
|

2 | let s: String = "Bye";
| ------ ^^^^^
| | |
| | expected struct `String`,

found `&str`
| | help: try using a conversion

method: `"Bye".to_string()`
| expected due to this

02/04/2023IOANNIS KOSTARAS 57

STRINGS

or
String::from("Bye")

or
let s:&str = "bye";

A String slice, not a
String

let mut s = String::new();

let slice = &string[start..end-1];

let str=String::from("Hello world");

let hello_slice1 = &str[0..5];

let hello_slice2 = &str[0..=4];

let hello_slice = &str[..];

println!("{}, {}, {} ", hello_slice1, hello_slice2,
hello_slice);

Hello, Hello, Hello world
02/04/2023IOANNIS KOSTARAS 58

STRING SLICE
• String literals are considered string slices since they are stored in

binary.
• &str is an immutable reference, and string literals are immutable.

STRINGS AND &STR

Stack

Heap

7 .. 0 . 0 . 1 : 8 021

Name Value
length 12

capacity 14
ptr

String

Name Value
length 2

ptr

&str
String &str

Stack

Heap

• Introduction and History
• Installation

• Tools
• Basics

• Data types
• Variables, Control flow and loops
• Arrays, Tuples
• Strings and Slices
ØFunctions

• Memory Management
• Ownership, References, Lifetimes

• Object Orientation
• Structs, Enums and Traits

• Summary

AGENDA

fn f_to_c(fahreneit: f64) -> f64 {

// return (f - 32) / 1.8;

(f - 32) / 1.8

}

02/04/2023IOANNIS KOSTARAS 64

FUNCTIONS

Implicit return
No ;

fn pow(x: i32) -> i32 {

x*x // ó return x*x;

}

fn main() {

let n: i32 = 4;

println!("{}^2 = {}", n, pow(n));

}

4^2 = 16

02/04/2023IOANNIS KOSTARAS 65

PASS ARGUMENTS BY VALUE
Take ownership

fn pow(x: &i32) -> i32 {

return x * x;

}

fn main() {

let n: i32 = 4;

println!("{}^2 = {}", n, pow(&n));

}

4^2 = 16

02/04/2023IOANNIS KOSTARAS 66

PASS ARGUMENTS BY REFERENCE

Passing by reference is important when we
have a large object and don't wish to copy it.

borrow

fn pow(x: &mut i32) {

*x = *x * *x;

}

fn main() {

let mut n: i32 = 4;

pow(&mut n);

println!("n = {}", n);

}

4^2 = 16

02/04/2023IOANNIS KOSTARAS 67

MUTABLE REFERENCES
mutable
borrow

fn report(s: &str) {

println!("str '{}'", s);

}

fn main() {

let text = "Hello World"; // the string slice

let s = text.to_string(); // an allocated
string

// the borrow operator & coerces String to &str

report(text);

report(&s);

}

02/04/2023IOANNIS KOSTARAS 68

PASS A STRING TO A
FUNCTION

• Introduction and History
• Installation

• Tools
• Basics

• Data types
• Variables, Control flow and loops
• Arrays, Tuples
• Strings and Slices
• Functions

ØMemory Management
• Ownership, References, Lifetimes

• Object Orientation
• Structs, Enums and Traits

• Summary

AGENDA

• LIFO (Last-In First-Out)
• Limited in size
• Very fast
• Stores data whose size is known at compile time, e.g.

integers, booleans, characters, arrays
• Stores function variables in stack frames (their scope)

• Every function has its own stack frame
• When a function exits it’s stack frame is released

(allocated memory is managed for us)
• Stack overflow

02/04/2023IOANNIS KOSTARAS 70

STACK

fn main() {

let a = 1;

stack_only(a);

}

fn stack_only(b: i32) {

let c = 2;

}

02/04/2023IOANNIS KOSTARAS 71

STACK

main()
a = 1

stack_only()
c = 2
b = 1

• Stores data whose size is unknown at compile time
• The operating system returns a pointer to an empty

place in the heap memory. This is referred to as
"allocating on the heap.”

• Not automatically managed
• (De-)allocate memory manually

• Accessible by any function
• Heap allocations are expensive
• Heap fragmentation

02/04/2023IOANNIS KOSTARAS 72

HEAP

Heap

Stack

stack_and_heap()
e = (0xff123454)

d = 3

fn main() {

let a = 1;

stack_only(a);

}

fn stack_only(b: i32) {

let c = 2;

stack_and_heap();

}

fn stack_and_heap() {

let d = 3;

let e = Box::new(4);

}
02/04/2023IOANNIS KOSTARAS 73

HEAP

main()
a = 1

stack_only()
c = 2
b = 1

0xff123454: 4

• All values in Rust are stack allocated by default.
• Values can be boxed (allocated on the heap) by

creating a Box<T>.
• A box is a smart pointer to a heap allocated value of

type T.
• When a box goes out of scope, its destructor is called,

the inner object is destroyed, and the memory on the
heap is freed.

• Box::from(variable)

02/04/2023IOANNIS KOSTARAS 74

BOXES

• Introduction and History
• Installation

• Tools
• Basics

• Data types
• Variables, Control flow and loops
• Arrays, Tuples
• Strings and Slices
• Functions

• Memory Management
ØOwnership, References, Lifetimes

• Object Orientation
• Structs, Enums and Traits

• Summary

AGENDA

• Ownership is a unique feature of the Rust programming
language that ensures memory safety without the use
of a garbage collector or pointers.

• The term "ownership" refers to when a piece of code
owns a resource. The code constructs an object that
holds the resource. The object is destroyed and the
resource is freed when the control reaches the
conclusion of the block.

• Rust utilizes the borrow checker during compile time. If it
compiles, it will most likely work during runtime.

02/04/2023IOANNIS KOSTARAS 76

VARIABLE OWNERSHIP

https://doc.rust-lang.org/book/ownership.html

IOANNIS KOSTARAS

3 Rules:
1. Each value has an owner (a

variable that owns it)
2. There can be only one

owner at a time
3. Value gets dropped if its

owner goes out of scope

77

VARIABLE OWNERSHIP
(CONT.)

24/11/2022

• Every value in Rust has a variable linked with it, which is
referred to as its owner.

• Ownership can be transferred from one variable to
another.

• The "owner" of a variable can modify its owning value.
• Only one owner can be present at any given moment.
• When the owner is removed from the scope, the value

connected with them is lost.

02/04/2023IOANNIS KOSTARAS 78

VARIABLE OWNERSHIP
(CONT.)

https://doc.rust-lang.org/book/ownership.html

let myvar = 42;

• myvar is a variable binding
• myvar owns/is bound to the value 42
• Every value has exactly one owner
• Owner can only change value if it's mutable
let mut myvar = 42;

02/04/2023IOANNIS KOSTARAS 79

VARIABLE OWNERSHIP
(CONT.)

let x = String::from("Hi"); // x owns "Hi"
let y = x; // Warning! The ownership of x moves to y
println!("{}", x); // Error! x is no longer available

https://doc.rust-lang.org/book/ownership.html

3 | let y = x; // Warning! The ownership of x moves to y

| ^ help: if this is intentional, prefix it with an underscore:
`_y`

error[E0382]: borrow of moved value: `x`

--> src/main.rs:4:16

|

2 | let x = String::from("Hi"); // x owns “Hi”

| - move occurs because `x` has type `String`, which does not
implement the `Copy` trait

3 | let y = x; // Warning! The ownership of x moves to y

| - value moved here

4 | println!("{}", x); // Error! x is no longer available

| ^ value borrowed here after move

error: aborting due to previous error; 1 warning emitted

For more information about this error, try `rustc --explain E0382`.
02/04/2023IOANNIS KOSTARAS 80

VARIABLE OWNERSHIP
(CONT.)

02/04/2023IOANNIS KOSTARAS 81

OWNERSHIP APPLIES TO
REFERENCES ONLY

let x = String::from("Hi"); // x owns "Hi"
let y = x; // Warning! The ownership of x moves to y
println!("{}", x); // Error! x is no longer available

let x = 42;
let y = x;
println!("{}", x);

42

02/04/2023IOANNIS KOSTARAS 82

VARIABLE OWNERSHIP
(CONT.)Stack Heap

ptr

len 2

capacity 2

H

ix

02/04/2023IOANNIS KOSTARAS 83

VARIABLE OWNERSHIP
(CONT.)Stack Heap

ptr

len 2

capacity 2

H

ix

ptr

len 2

capacity 2

y

• The copy trait is a particular annotation that is applied
to types that are stored on the stack.

• If the types have the copy trait, the older variable can
be used even after the assignment action.

• Clone is explicit by using the clone() method and
creates a duplicate owner to a binding.

02/04/2023IOANNIS KOSTARAS 84

COPY & CLONE TRAITS

02/04/2023IOANNIS KOSTARAS 85

VARIABLE OWNERSHIP
(CONT.)

let x = String::from("Hi"); // x owns "Hi"
let y = x.clone();
println!("{}", x); // "Hi"

https://doc.rust-lang.org/book/ownership.html

02/04/2023IOANNIS KOSTARAS 86

VARIABLE OWNERSHIP
(CONT.)Stack Heap

ptr

len 2

capacity 2

H

ix

ptr

len 2

capacity 2

y

H

i

• When a variable is handed to a function, ownership is
transferred to the called function's variable.

• Passing value has the same semantics as assigning a
value to a variable.

• When you return values from a function, you're also
transferring ownership.

02/04/2023IOANNIS KOSTARAS 87

FUNCTION OWNERSHIP

fn main() {

let x = String::from("Hi"); // x owns "Hi"

report(x);

println!("{}", x); // Error! x is no longer
available

}

fn report(s: String) {

println!("{}", s);

}

02/04/2023IOANNIS KOSTARAS 88

FUNCTION OWNERSHIP

Ownership is transferred
to s.

Value borrowed here after move

error[E0382]: borrow of moved value: `x`

--> src/main.rs:8:19

|

6 | let x = String::from("Hi"); // x owns "Hi"

| - move occurs because `x` has type
`String`, which does not implement the `Copy` trait

7 | report(x);

| - value moved here

8 | println!("{}", x); // Error! x is no longer
available

| ^ value borrowed here after
move

02/04/2023IOANNIS KOSTARAS 89

FUNCTION OWNERSHIP
ERROR MESSAGE

fn report(s: &String) {

println!("{}", s);

}

fn main() {

let x = String::from("Hi"); // x owns "Hi"

report(&x);

println!("{}", x); // Error! x is no longer
available

}

02/04/2023IOANNIS KOSTARAS 90

FUNCTION OWNERSHIP
SOLUTION

Ugly; better use &str
Rust converts &String to

&str

fn report(arr: &[i32]) {

println!("arr is {:?}", arr);

}

fn main() {

let mut v = Vec::new();

v.push(1);

v.push(2);

v.push(3);

report(&v);

let slice = &v[1..];

println!("slice is {:?}", slice);

}

02/04/2023IOANNIS KOSTARAS 91

FUNCTION OWNERSHIP

borrow operator &
is coercing the

vector into a slice

02/04/2023IOANNIS KOSTARAS 92

MEMORY MANAGEMENT
(CONT.)

let v = vec![1,2,3];

Stack

Heap

02/04/2023IOANNIS KOSTARAS 93

MEMORY MANAGEMENT
(CONT.)

let v = vec![1,2,3];

Stack
v

length
capacity

Heap
1
2
3

02/04/2023IOANNIS KOSTARAS 94

MEMORY MANAGEMENT
(CONT.)

let v = vec![1,2,3];
let w = v;

Stack
v

length
capacity

w
length

capacity

Heap
1
2
3

out of
scope

• Introduction and History
• Installation

• Tools
• Basics

• Data types
• Variables, Control flow and loops
• Arrays, Tuples
• Strings and Slices
• Functions

• Memory Management
ØOwnership, References, Lifetimes

• Object Orientation
• Structs, Enums and Traits

• Summary

AGENDA

• References allow us to refer to a value without taking
ownership of it

• References are immutable by default
• mutable references: &mut
• In the same scope we can many immutable references

or one mutable reference
• If we have a mutable borrow we can’t have any other

borrows
• No data races!

REFERENCES

• A reference is an address that is supplied as an argument
to a function. Similar to a pointer in C.

• All references are borrowed from some value, and all
values have lifetimes

• The lifetime of a reference cannot be longer than the
lifetime of that value.

02/04/2023IOANNIS KOSTARAS 97

REFERENCES (CONT.)

• Borrowing is the same as borrowing something and
returning it after we are finished with it.

• Borrowing permits many references to a single resource
while maintaining the need of a "single owner."

• Borrowing and references are mutually exclusive,
meaning that when a reference is relinquished, the
borrowing ceases as well.

• There are two sorts of references:
• Mutable: are relocated
• Immutable: are copied

02/04/2023IOANNIS KOSTARAS 98

REFERENCES (CONT.)

• After a variable is referenced by other variables, the
ownership of its value remains and will not be lost.

02/04/2023IOANNIS KOSTARAS 99

REFERENCES (CONT.)

&variable
parameter: &type

fn main() {
let s=String::from("Hi"); // s owns "Hi";
let n=length(&s); // s still owns the value
println!("Value: {}",s);
println!("Length: {}",n);

}

fn length(str:&String) -> usize {
str.len() // get the length of the string

} When the variables are supplied to the function
as a reference rather than actual values, we

don't need to return the values to reclaim
ownership.

02/04/2023IOANNIS KOSTARAS 100

REFERENCES (CONT.)
fn main() {
let a=1;
double_it(&a); println!("Value: {}",a);
}
fn double_it(x:&i32) {
*x *= 2
}

error[E0594]: cannot assign to `*x`, which is behind a `&`
reference
--> src/main.rs:6:2
|

5 | fn double_it(x:&i32) {
| ---- help: consider changing this to be

a mutable reference: `&mut i32`
6 | *x *= 2;
| ^^^^^^^ `x` is a `&` reference, so the data it refers

to cannot be written

For more information about this error, try `rustc --explain
E0594`.

02/04/2023IOANNIS KOSTARAS 101

REFERENCES (CONT.)
fn main() {
let a=1;
double_it(&a); println!("Value: {}",a);
}
fn double_it(x:&mut i32) {
*x *= 2
}

error[E0308]: mismatched types
--> src/main.rs:3:12
|

3 | double_it(&a);
| ^^ types differ in mutability
|
= note: expected mutable reference `&mut i32`

found reference `&{integer}`

For more information about this error, try `rustc --explain
E0308`.

Mutable reference

02/04/2023IOANNIS KOSTARAS 102

REFERENCES (CONT.)
fn main() {
let a=1;
double_it(&mut a); println!("Value: {}",a);

}
fn double_it(x:&mut i32) {
*x *= 2;

}

error[E0596]: cannot borrow `a` as mutable, as it is not
declared as mutable
--> src/main.rs:3:12
|

2 | let a = 1;
| - help: consider changing this to be mutable: `mut

a`
3 | double_it(&mut a);
| ^^^^^^ cannot borrow as mutable

For more information about this error, try `rustc --explain
E0596`.

02/04/2023IOANNIS KOSTARAS 103

REFERENCES (CONT.)
fn main() {
let mut a=1;
double_it(&mut a); println!("Value: {}",a);

}
fn double_it(x:&mut i32) {
*x *= 2;

}

Value: 2

• In a given scope, we can only have one mutable
reference

02/04/2023IOANNIS KOSTARAS 104

RESTRICTIONS OF MUTABLE
REFERENCES

let mut s=String::from("Hi");
let s1 = &mut s;
let s2 = &mut s;

error[E0499]: cannot borrow `s` as mutable more than once at a
time

https://doc.rust-lang.org/stable/error-index.html%23E0499

• If we have an immutable reference, then we can't have
a mutable reference.

02/04/2023IOANNIS KOSTARAS 105

RESTRICTIONS OF MUTABLE
REFERENCES

let mut s=String::from("Hi");
let s1 = &s; let s2 = &mut s;

error[E0499]: cannot borrow `s` as mutable because it is also
borrowed as immutable

https://doc.rust-lang.org/stable/error-index.html%23E0499

• Introduction and History
• Installation

• Tools
• Basics

• Data types
• Variables, Control flow and loops
• Arrays, Tuples
• Strings and Slices
• Functions

• Memory Management
ØOwnership, References, Lifetimes

• Object Orientation
• Structs, Enums and Traits

• Summary

AGENDA

{

let a = 5;

let b = "hi";

{

let c = "hi".to_string();

// a,b and c are visible

}

// a,b are visible, c is dropped

for i in 0..a {

let b = &b[i..];

// original b is shadowed.

}

// b is dropped, i is not visible

// a, b are visible

}

02/04/2023IOANNIS KOSTARAS 107

SCOPES

let s = "hello".to_string();

let mut rs = &s;

{

let tmp = "hello world".to_string();

rs = &tmp;

}

println!("ref {}", rs);

error: `tmp` does not live long enough

--> ref.rs:8:5

|

7 | rs = &tmp;

| --- borrow occurs here

8 | }

| ^ `tmp` dropped here while still borrowed

9 | println!("ref {}", rs);

10 | }

| - borrowed value needs to live until here
02/04/2023IOANNIS KOSTARAS 108

SCOPES

• Rust is a block-scoped language.
• Variables only exist for the duration of their block
• Variable binding disappears when it goes out of scope, it

releases the resource, and loses ownership.
• No borrow may outlive its value's owner.

02/04/2023IOANNIS KOSTARAS 109

LIFETIMES

fn main() {
let s=String::from("Hi"); // s owns "Hi"; "Hi" is bound to s
let n=length(s); // Warning! s will lose the ownership after

used
println!("Value: {}",s); // s is no longer available
println!("Length: {}",n);

}

fn length(str:String) -> usize { // str takes onwership of "Hi"
str.len() // get the length of the string

}

02/04/2023IOANNIS KOSTARAS 110

LIFETIMES
error[E0382]: borrow of moved value: `s`
--> src/main.rs:4:41
|

2 | let s=String::from("Hi"); // s owns “Hi”
| - move occurs because `s` has type `String`, which

does not implement the `Copy` trait
3 | let n=length(s); // Warning! s will lose the ownership
after used
| - value moved here

4 | println!("Value: {}",s); // s is no longer available
| ^ value borrowed here after move

error: aborting due to previous error

For more information about this error, try `rustc --explain
E0382`.

02/04/2023IOANNIS KOSTARAS 111

LIFETIMES
fn main() {
let c='a'; // c owns 'a'; 'a’ is bound to c
prnt(c);
println!("Value: {}",c); // char has the copy trait

}

fn prnt(ch:char) { // ch takes onwership of 'a'
println!("Value: {}",ch);

}

Value: a
Value: a

• To be able to statically check all the references in our
code, the Rust compiler makes use of lifetime specifiers,
i.e. special annotations to our references

• Lifetime example: <'buf>
s: &'buf str

02/04/2023IOANNIS KOSTARAS 112

LIFETIMES

s: &str

dangling pointer

buffer

• Lifetimes allow the Rust compiler to guarantee memory
safety

• Lifetime parameters don’t allow us to choose for how
long a value lives
• they communicate to the compiler that some references

are related to the same memory and are expected to
share the same lifetime

02/04/2023IOANNIS KOSTARAS 113

LIFETIMES

• Introduction and History
• Installation

• Tools
• Basics

• Data types
• Variables, Control flow and loops
• Arrays, Tuples
• Strings and Slices
• Functions

• Memory Management
• Ownership, References, Lifetimes

ØObject Orientation
• Structs, Enums and Traits

• Summary

AGENDA

• Structs & Enums
• Traits

• describe a type's abilities
• glue the data types together

02/04/2023IOANNIS KOSTARAS 115

CUSTOM TYPES

http://rustbyexample.com/custom_types.html
https://doc.rust-lang.org/book/traits.html

• OO Properties:
• Encapsulation √
• Abstraction √
• Inheritance (√)
• Polymorphism √

• Encapsulation is supported with Structs and modules
• Only Interface Inheritance is supported via Traits (no

implementation inheritance)
• Only Trait inheritance

• Polymorphism via trait objects
• Bounded parametric polymorphism: generics + trait bounds

• Monomorphism via generics

02/04/2023IOANNIS KOSTARAS 116

OO IN RUST

https://www.infoworld.com/article/2073649/why-extends-is-evil.html

• Introduction and History
• Installation

• Tools
• Basics

• Data types
• Variables, Control flow and loops
• Arrays, Tuples
• Strings and Slices
• Functions

• Memory Management
• Ownership, References, Lifetimes

• Object Orientation
ØStructs, Enums and Traits

• Summary

AGENDA

IOANNIS KOSTARAS

• a user-defined data type
• Rust has three struct types: a classic C struct, a tuple

struct, and a unit struct.
• Struct members are called fields
• No struct inheritance!

118

STRUCT

24/11/2022

// struct creation
struct StructName {
member1: type,
member2: type,
…
}

// struct initialization
let object = StructName {
member1: value1,
member2: value2,
…
}

field

02/04/2023IOANNIS KOSTARAS 119

STRUCT EXAMPLE
// struct creation
struct Book {
isbn: String,
pages: u16,

}
fn main() {

let book = Book {
isbn: "123456789".to_string(),
pages:123};

print!("ISBN: {}, pages: {}",
book.isbn, book.pages);

}

ISBN: 123456789, pages: 123, …

02/04/2023IOANNIS KOSTARAS 120

STRUCT METHODS

impl Struct {
fn method_name(&self) -> type {
self.member // access the member variable

}
}

• self represents the instance on which the function is
called

• it is always the first parameter of such methods

impl block

• Structs consist of 2 parts:
o Definition which defines the data (fields)
o Implementation with impl block which defines the

functionality
• A Struct can have two types of functionality:

o Methods
• require self as the first parameter (equivalent to this)
• self represents the instance on which the function is

called
o Associated functions are associated with the struct

type
• don’t need an instance of the struct (like static methods)

02/04/2023IOANNIS KOSTARAS 121

STRUCT METHODS AND
ASSOCIATED FUNCTIONS

IOANNIS KOSTARAS24/11/2022
122

STRUCT METHODS
struct Book {

isbn: String,
pages: u32,

}
impl Book {

fn new(isbn: &str, pages: u32) -> Book {
Book {

isbn: isbn.to_string(),
pages: pages, // pages

}
}

}
fn main() {

let book = Book::new("123456789", 123);
print!("ISBN: {}, pages: {}, …",

book.isbn, book.pages);
}

Associated function

Self

Self

IOANNIS KOSTARAS24/11/2022
123

struct Book {
isbn: String,
pages: u32,
available: bool

}
impl Book {

fn new(isbn: &str, pages: u32, avail: bool) -> Book{
Book {

isbn: isbn.to_string(),
pages: pages,
available: avail

}
}
fn available(&self) -> bool { &self.available }

}
fn main() {

let book = Book::new("123456789", 123, true);
if book.available() { //… }

}

Method getter

STRUCT METHODS

Associated function

02/04/2023IOANNIS KOSTARAS 124

STRUCT METHODS
struct Book {
isbn: String,
pages: u16,
available: bool

}
impl Book {

//...
fn set_isbn(&mut self, isbn: &str) {

self.isbn = isbn.to_string();
}
fn copy(&self) -> Self {

Self::new(&self.isbn,&self.pages,&self.available)
}

}

• no self argument: you can associate functions with
structs, like the new "constructor".

• &self argument: can use the values of the struct, but
not change them

• &mut self argument: can modify the values
• self argument: will consume the value, which will

move.

02/04/2023IOANNIS KOSTARAS 125

STRUCT METHODS
SUMMARY

• Introduction and History
• Installation

• Tools
• Basics

• Data types
• Variables, Control flow and loops
• Arrays, Tuples
• Strings and Slices
• Functions

• Memory Management
• Ownership, References, Lifetimes

• Object Orientation
ØStructs, Enums and Traits

• Summary

AGENDA

IOANNIS KOSTARAS

enum Enum_Name{

value1,

value2,

…

}

Enum_Name::value1

127

ENUM

24/11/2022

• A set of fixed values
• Can contain methods
• Similar to C unions

02/04/2023IOANNIS KOSTARAS 128

ENUM EXAMPLE
enum Choice {
RedPill, BluePill

}
let choice = Choice::RedPill;
match choice {
Choice::BluePill => println!("Keep on

sleeping..."),
Choice::RedPill => println!("Welcome to

Matrix!")
}

enum Day {
MON, TUE, WED, THU, FRI, SAT, SUN

}
fn work_or_not(day:Day) -> bool {

match day {
Day::MON | Day::TUE | Day::WED | Day::THU |

Day::FRI => true,
Day::SAT | Day::SUN => false

}
}
fn main() {
println!("Work on Monday? {}",

work_or_not(Day::MON));
println!("Work on Sunday? {}",

work_or_not(Day::SUN));
}

02/04/2023IOANNIS KOSTARAS 129

ANOTHER ENUM EXAMPLE

02/04/2023IOANNIS KOSTARAS 130

ENUM METHODS
impl Enum {

fn method_name(&self) -> type {
self.member // access the member variable

}
}

enum Day {

MON, TUE, WED, THU, FRI, SAT, SUN

}

impl Day {

fn work_or_not(self) -> bool {

match self {

Day::MON | Day::TUE | Day::WED | Day::THU | Day::FRI
=> true,

Day::SAT | Day::SUN => false

}

}

}

fn main() {

println!("Work on Monday? {}", Day::work_or_not(Day::MON));

println!("Work on Sunday? {}", Day::work_or_not(Day::SUN));

}

02/04/2023IOANNIS KOSTARAS 131

ENUM METHOD EXAMPLE

• Rust’s enums are similar to algebraic data types in
functional languages, such as F#, OCaml, and Haskell.

• Enums can
• have methods defined on them
• implement traits

• No ordering/ordinal (use PartialOrd trait)
• Enum values can have default values
• Enum values can be of different types
• Enum values cannot be compared (use PartialEq

trait)

02/04/2023IOANNIS KOSTARAS 132

ENUMS (CONT.)

02/04/2023IOANNIS KOSTARAS 133

ENUMS (CONT.)
enum Guard {

Battalion (String),
Move { x: i32, y: i32 },
Color (u16, u16, u16)

}

Guard::Move { x: 10, y: 30 }
Guard::Battalion(String::from("Red"))
Guard::Color(200, 255, 255),

02/04/2023IOANNIS KOSTARAS 134

OPTION<T>
enum Option<T> {

Some(T),
None,

}

let var = slice.get(5);
match var {

Some(x) => { println!("Value is {}", x); },
None(x) => { println!("No Value"); },
_ => { println!("Who cares!"); }

}
var.is_some();
var.is_none();
var.unwrap();

let arguments: Vec<String> = env::args().collect();

let who = match arguments.get(1) {

Some(someone) => someone,

None => "World"

};

println!("Hello, {who}!");

let arguments: Vec<String> = env::args().collect();

let who = if let Some(someone) = arguments.get(1) {

someone

} else {

"World"

};

println!("Hello, {who}!");

IF LET

02/04/2023IOANNIS KOSTARAS 136

RESULT<T, E>
enum Result<T, E> {

Ok(T),
Err(E),

}

use std::fs::File;
fn main() {

let result = File::open("passwd");
if result.is_ok() {

let f = result.unwrap();
}
let e = result.expect("error message");

}

IOANNIS KOSTARAS24/11/2022
137

RESULT<T, E>
enum Result<T, E> {

Ok(T),
Err(E),

}

use std::fs::File;
fn main() {

let result = File::open("passwd");
match result {

Ok(f) => { /* do stuff */ },
Err(e) => { /* do stuff */ },

}
// let result = File::open("passwd")?;

}

• Introduction and History
• Installation

• Tools
• Basics

• Data types
• Variables, Control flow and loops
• Arrays, Tuples
• Strings and Slices
• Functions

• Memory Management
• Ownership, References, Lifetimes

• Object Orientation
ØStructs, Enums and Traits

• Summary

AGENDA

•describe a type's abilities
•glue the data types together

02/04/2023IOANNIS KOSTARAS 139

TRAITS

https://doc.rust-lang.org/book/traits.html

02/04/2023IOANNIS KOSTARAS 140

TRAITS
trait Trait_Name { // similar to interface

type: member;
fn trait_method(&self);

}

impl Trait_Name for Struct_Name {
fn trait_method(&self){self.member}

}

First letter should be
capital

trait Borrowed {

fn is_borrowed(&self) -> bool;

}

impl Borrowed for Book {

fn is_borrowed(&self) -> bool {

!self.is_available()

}

}

02/04/2023IOANNIS KOSTARAS 141

TRAITS

trait Borrowed {

fn is_borrowed(&self) -> bool;

}

fn borrowed<T: Borrowed>(item: T) {

println!("{}", item.is_borrowed());

}

02/04/2023IOANNIS KOSTARAS 142

TRAITS

IOANNIS KOSTARAS

trait Borrowed {

fn is_borrowed(&self) -> bool {

false

}

}

fn borrowed<T: Borrowed>(item: T) {

println!("{}", item.is_borrowed());

}
143

TRAITS

24/11/2022

• Trait functions can have default implementations
• Implementors can override these default implementations

02/04/2023IOANNIS KOSTARAS 144

TRAIT INHERITANCE
trait Borrowed {

fn is_borrowed(&self) -> bool;
}

trait Returned {

fn is_returned(&self) -> bool;

}

trait Available: Borrowed+Returned{}

No dynamic casting, e.g. Borrowed to
Available

02/04/2023IOANNIS KOSTARAS 145

COPY TRAIT
#[derive(Copy)]
struct Book {
isbn: String,
pages: u32,
available: bool

}

IOANNIS KOSTARAS24/11/2022
146

ERROR TRAIT
std::error::Error
pub trait Error: Debug + Display {
...
}

Format string
Debug formatter {:?}

Trait inheritance

02/04/2023IOANNIS KOSTARAS 147

DERIVABLE TRAITS
#[derive(Copy)]
#[derive(Debug)]
println!("{:?}", x); // Debug
println!("{:#?}", x); // Pretty debug

#[derive(Clone)]
#[derive(Default)]

• the trait for the 'dereference' operator *
• String implements Deref<Target=str> and so all

the methods defined on &str are automatically
available for String as well

• Same for Box<Something> and Something

02/04/2023IOANNIS KOSTARAS 148

DEREF TRAIT

https://rust-lang.github.io/book/second-edition/ch15-02-deref.html

IOANNIS KOSTARAS24/11/2022
149

STATIC & DYNAMIC
DISPATCH

pub fn send(&self, stream: &mut dyn
Write) {}

pub fn send(&self, stream: &mut impl
Write) {}

• class ó data and traits
• structs and enums are dumb,

• although you can define methods and do data hiding
• a limited form of subtyping is possible on data using the
Deref trait

• traits don't have any data
• but can be implemented for any type (not just structs)

• traits can inherit from other traits
• traits can have provided methods, allowing interface code

re-use
• traits give you both

• virtual methods (polymorphism)
• generic constraints (monomorphism)

02/04/2023IOANNIS KOSTARAS 150

OO SUMMARY

• Introduction and History
• Installation

• Tools
• Basics

• Data types
• Variables, Control flow and loops
• Arrays, Tuples
• Strings and Slices
• Functions

• Memory Management
• Ownership, References, Lifetimes

• Object Orientation
• Structs, Enums and Traits

ØSummary

AGENDA

• Type inference
• Rust is a strongly typed static language
• Rust likes to infer types, but you can’t change

the inferred type later; e.g. Rust won’t
automatically convert between u32 and u64

• Mutable References
• There can be only one mutable reference at a

time
• can't have immutable references while there's

a mutable reference out
• the borrow checker is not always as smart as it

could be
02/04/2023IOANNIS KOSTARAS 152

POINTS TO REMEMBER

• References & Lifetimes
• Rust cannot allow a situation where a reference

outlives the value
• Otherwise we would have a 'dangling

reference' where it refers to a dead value a.k.a.
a segmentation fault

• An explicit lifetime is needed when a struct or a
function borrows a reference, unless lifetime
elision can be applied

• For both structs and functions, the lifetime
needs to be declared in <> like a type
parameter, e.g. <'a>

02/04/2023IOANNIS KOSTARAS 153

POINTS TO REMEMBER
(CONT.)

• Strings and literals
• String is an owned string, allocated on the

heap
• a string literal (e.g. "hello”) is of type &str

("string slice") and might be either put into the
executable ("static") as is or borrowed from a
String

• String and &String are different types
• s1 + s2

02/04/2023IOANNIS KOSTARAS 154

POINTS TO REMEMBER
(CONT.)

String &str

BOOKS
• Klabnic S. & Nichols C. (2021), The Rust Programming

Language, 2nd Ed., No Starch Press.
• Abhishek K. (2022), Rust Crash Course, BPB.
• Alves C. (2021), Rust Programming Language, 3rd Ed.
• Anderson B. (2023), Rust for Network Programming and

Automation, GitforGits.
• Bhattacharjee J. (2020), Practical Machine Learning with

Rust, Apress.
• Bos M. (2023), Rust Atomics and Locs, O’Reilly.
• Blandy J. (2015), Why Rust, O’Reilly.
• Blandy J. et al. (2021), Programming Rust, 2nd Ed., O’Reilly.
• Eshwarla P. (2020), Practical System Programming for Rust

Developers, Packt.

02/04/2023IOANNIS KOSTARAS 155

BOOKS (CONT.)

• Flitton M. (2023), Rust Web Programming, Packt.
• Gjengset J. (2022), Rust for Rustaceans, No Starch Press.
• Khan M. (2023), Rust for C++ Programmers, BPBOnline.
• Kolodin D. (2019), Hands-on Microservices with Rust,

Packt.
• Lyu S. (2020), Practical Rust Projects, Apress.
• Lyu S. (2021), Practical Rust Web Projects, Apress.
• Matzinger C. (2019a), Rust Programming Cookbook,

Packt.
• Matzinger C. (2019b), Hands-on Data Structures and

Algorithms with Rust, Packt.
• Matzinger C. (2022), Learn Rust Programming, Packt.

02/04/2023IOANNIS KOSTARAS 156

BOOKS (CONT.)

• McNamara T. S. (2021), Rust in Action, Manning.
• Mesier R. (2021), Beginning Rust Programming, Wiley.
• Milanesi C. (2018), Beginning Rust, Apress.
• Rufus S. (2021), Rust Programming, 3rd Ed., NLN.
• Rustucean Team (2021), Practical Rust 1.x Cookbook,

GitforGits.
• Rustucean Team (2023), Rust in Practice, GitforGits.
• Snoyman M. & Snoyman M. (), Begin Rust, BR.
• Wolverson H. (2021), Hands-on-Rust, The Pragmatic

Programmer.
• Wolverson H. (2022), Rust Brain Teasers, The Pragmatic

Programmer.
• Xu J. (2021), Practical GPU Graphics with wgpu and Rust,

UniCAD.
02/04/2023IOANNIS KOSTARAS 157

LINKS (CONT.)

• Klabnic S. & Nichols C. (2021), The Rust Programming
Language, 2nd Ed., online.

• The Rust Reference
• Rust by Example
• A Gentle Introduction to Rust
• Rustlings
• Advent of Code challenges in Rust
• Rust for Java Developers, blog
• Design patterns in Rust
• Rust design patterns

02/04/2023IOANNIS KOSTARAS 158

https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/reference/introduction.html
https://doc.rust-lang.org/rust-by-example/index.html
https://stevedonovan.github.io/rust-gentle-intro/readme.html
https://github.com/rust-lang/rustlings
https://fasterthanli.me/series/advent-of-code-2022/
https://wcgw.dev/posts/2023/rusty-java-intro/
https://refactoring.guru/design-patterns/rust
https://rust-unofficial.github.io/patterns/

